Notice how they don’t have that nice big pretty volcano cone shape? It just looks like some drunk geologists scribbled on a map and drew circles around a low lying area with a lake or two in it and called it a “volcano” or a “volcanic zone”.
The reason though is that the BIGGEST and most destructive volcanic eruptions tend to happen with lava/magma that doesn’t flow very well and like when you get a stuffed nose, everything gets blocked up. Like many of us, these volcanos don’t solve the problem and go take a decongestant or blow their nose, they just sit there sniveling and stewing, failing to release the pressure that keeps building and building and building.
These eruptions are called felsic eruptions (the opposite of mafic, goopy eruptions you have seen footage of from Hawaii where the lava comes out like a fluid). An immense amount of gas is released by magma as it becomes exposed to the surface (which then we call it “lava”) as the gas is no longer kept in the magma at immense pressures. The magma can’t flow and “pass the gas” so to speak so a plug forms and what you get is a terrifyingly big pressure cooker that just builds and builds like that person on the plane next to you that just keeps sniffing and sniffing and never blowing their nose.
When the built up pressure finally overcomes the plug, the resulting explosion is so catastrophic it doesn’t leave a clean volcano shape. What you are left with is an uneven low topography dotted with lakes that marks the site of an incomprehensibly large explosion, hence the topography of Yellowstone, Wyoming and the Taupo Volcanic Zone on the North Island of New Zealand.
TIME FOR SOME STATS THAT WILL BREAK YOUR BRAIN
"The Taupō Volcanic Zone has produced in the last 350,000 years over 3,900 cubic kilometres (940 cu mi) material, more than anywhere else on Earth, from over 300 silicic eruptions [my edit: “Felsic” means “has lots of silica/silicic (silicic? seriously wikipedia?) and wants to form minerals high in silica like quartz and feldspar”], with 12 of these eruptions being caldera-forming. Detailed stratigraphy in the zone is only available from the Ōkataina Rotoiti eruption but including this event, the zone has been more productive than any other rhyolite predominant volcanic area [my edit: Rhyolite is a record of catastrophe, it is a Felsic, silica-rich igneous rock like Granite except it cooled FAST at the surface instead of in big underground “batholiths” (that make up a good portion of the Canadian Shield and the NE of the US among other places) where the minerals had time to grow into big pretty crystals, same ingredients as Granite but with much more exciting baking instructions] over the last 50,000 odd years at 12.8 km3 (3.1 cu mi) per thousand years. Comparison of large events in the Taupō volcanic zone over the last 1.6 million years at 3.8 km3 (0.91 cu mi) per thousand years versus with Yellowstone Caldera’s 2.1 million year productivity at 3.0 km3 (0.72 cu mi) per thousand years favours Taupo…
…The last major eruption from Lake Taupō, the Hatepe eruption, occurred in 232 CE. It is believed to have first emptied the lake, then followed that feat with a pyroclastic flow that covered about 20,000 km2 (7,700 sq mi) of land with volcanic ash. A total of 120 km3 (29 cu mi) of material expressed as dense-rock equivalent (DRE) is believed to have been ejected, and over 30 km3 (7.2 cu mi) of material is estimated to have been ejected in just a few minutes."…
…“The main extremely violent pyroclastic flow travelled at close to the speed of sound and devastated the surrounding area, climbing over 1,500 m (4,900 ft) to overtop the nearby Kaimanawa Ranges and Mount Tongariro, and covering the land within 80 km (50 mi) with ignimbrite [my edit: the name for pyroclastic flow deposits, i.e. pumice and ash, that kind of thing]. Only Ruapehu was high enough to divert the flow. The power of the pyroclastic flow was so strong that in some places it eroded more material off the ground surface than it replaced with ignimbrite. There is evidence that it occurred on an autumn afternoon and its energy release was about 150 megatons of TNT equivalent. The eruption column penetrated the stratosphere as revealed by deposits in ice core samples in Greenland and Antarctica.”
Except Vesuvius, which looks like a volcano, but in 79CE erupted violently sending lave, magma and molten rocks several kilometers away, exactly like the stuffy nose you described. It completely destroyed Pompeii and Herculaneum, burying them for thousands of years.
Still nothing when compared to the destruction that the “Campi Flegrei” volcano brought 37’000 years ago, completely burying a huge section of the Campanian coastline.
Aain I love how it looks like a drunk geologist made a big scribble on a map and said before passing out “that Campi Flegrei, that’s a BIG one right there!” and you are just left looking at the map being like… what… are you sure that just looks like you randomly circled a huge part of the landscape?..like… really the whole bay?
Yeah, it pretty much blew out that whole section of coastline, that big hole is called a “caldera”. It’s still active btw, you can go and check it out if you want. Look for Solfatara di Pozzuoli.
You can also look at the Greek island of Santorini, where the whole western and central part of the island was blown off during the bronze age iirc. Historians speculate the eruption, earthquake and tsunamis caused by the event could have partially influenced the collapse of the Minoan civilization, the rise of the Mycenaeans, turmoil in Egypt and possibly even the fall of the Chinese empire due to a global winter. Crazy stuff
Are we just a bunch of crazy conspiracy theorists sitting in dark rooms with a computer and pinboard against the wall, complete with strings between posted mugshots of lava domes and dikes, muttering to ourselves as we circle vaguely roundish things on a map in red ink and exclaim “ANOTHER!!!” ??
No, we are usually in the middle of nowhere in the woods hiking erratically across the landscape with nobody around so we tend to shout at things more than mutter because why not.
Thank you that was super informative. Is there anything that can be done to mitigate an impending eruption? Ive always heard that if one of the big super volcanoes goes it could be quite catastrophic for the entire world. Surely theres been some research into like pressure relief holes or something…antacid tabs?
Surely theres been some research into like pressure relief holes or something…antacid tabs?
I am sure there are lots of geologists who have thought of it, it makes sense right?
The problem is that nobody gives a shit about listening to geologists unless they are talking about where to find oil. Even if a geoengineering project of this scale and magnitude (with such catastrophic consequences if it goes wrong) where possible with near current geological science and hardware this degree of interest and investment of society is only ever committed to visions techbros provide and I don’t think a single techbro has ever taken a geology class and actually remotely paid attention.
It was geologists in the 1970s who first pointed out the obvious connection between human released CO2 emissions and global warming.
Nobody gave a shit :)
(plenty of complicit geologists who made a veryyyyy good living too don’t get me wrong)
We are just weirdos going on about rocks except when those rocks are really valuable and provide the capacity to create empires but even in those cases we are never really part of that, we are always still the weirdos going on about rocks who everybody is like “ok but can you shut up now and point to the gold on the map?”.
I know it is a weird example but look at the landscapes of virtual environments, video game developers have been trying to craft evocative landscapes since the beginning of video games even before 3D engines, you would think that some of them might have been interested to find inspiration for world design from the dizzying variety of landforms and stories described in geology (that are perfect to engage a player with because geological landscapes are layered stories first and foremost).
From the perspective of a geologist, it is obvious for game developers to make world building tools that allow molding an entire mountain range for an open world rpg by first starting with two continents and smashing them together with your mouse over and over again until it made a compelling starting point (instead of just making every damn mountain by hand or just writing a dumb algorithm to randomly generate mountains) and then running a massive river through the mountains for 10 million years to create the main valley for the game.
Todd Howard released a screenshot of the next Elder Scrolls Game
the story here was there was a river and then a mountain range came in (some new kid named Appalachians) and was like “sorry dude” but then the Delaware River was like “I am literally going nowhere bro, put your silly mountains wherever you want and I will cut you down when you get in my way”. This friendly conversation has been going on for 400-500 million years, which is about 1/8 of the earth’s history (the earth was a hot mess for the 1st billion so that barely counts). A lot of rivers are pretty lazy, but not the Delaware River, you gotta give it credit.
A geological sandbox for large scale world design that allowed game developers to quickly and intuitively create landscapes with layered pasts and local variety that perennially inspired curiosity from players seems so obvious to me it is painful. (Also as a fun toy for its own sake).
Like damn… video games barely know how to make a rock outcrop look natural and it is 2024…
——
All that being said to point out that your vision of a cool geo-engineering project is mostly unrealistic because of humans not even bringing geology into the picture. Part of the globalized contagion of late-stage capitalism is VERY crucially a collective forgetting of the stories in the landscapes around us. We have been taught to see the landscape around us as a background for our genius, not the primary gift passed down by our ancestors, the foundation of all the beauty in our lives and a fascinating machine of anarchy that creates endless forms of order.
Everywhere all over the world people are extracting groundwater at a ridiculously unsustainable rate (the fucking AXIS EARTH IS TILTED ON has changed because so much groundwater has been extracted) even while geologists try to point out there is going to be no clean water left???, the dysfunction of our thinking with respect to land goes very deep unfortunately.
Instead we are left with this trash Elon Musk-esque obsession with spiritually disconnecting ourselves from Earth and leaving for Mars as if the idea of separating us from the landscape (and natural systems/biosphere) we evolved in makes any sense at a basic level of our body maintaining homeostasis effectively or is something we would even desire to do (thanks for that one, sci-fi shows and books!). It is like plucking an ant from an ant colony, carefully placing it into the ocean and whispering “now you can start a new life here”…… It makes no sense.
You are right sadly :( but dont discredit yourself so much! A ton of people do listen and a ton of people think yall are cool! I think you’re cool. Its just that those people and I dont tend to be the people that have the resource to make decisions
Big volcanoes look like this
(Mount Rainier, Washington)
The BIGGEST volcanoes look like this
Or this
Notice how they don’t have that nice big pretty volcano cone shape? It just looks like some drunk geologists scribbled on a map and drew circles around a low lying area with a lake or two in it and called it a “volcano” or a “volcanic zone”.
The reason though is that the BIGGEST and most destructive volcanic eruptions tend to happen with lava/magma that doesn’t flow very well and like when you get a stuffed nose, everything gets blocked up. Like many of us, these volcanos don’t solve the problem and go take a decongestant or blow their nose, they just sit there sniveling and stewing, failing to release the pressure that keeps building and building and building.
These eruptions are called felsic eruptions (the opposite of mafic, goopy eruptions you have seen footage of from Hawaii where the lava comes out like a fluid). An immense amount of gas is released by magma as it becomes exposed to the surface (which then we call it “lava”) as the gas is no longer kept in the magma at immense pressures. The magma can’t flow and “pass the gas” so to speak so a plug forms and what you get is a terrifyingly big pressure cooker that just builds and builds like that person on the plane next to you that just keeps sniffing and sniffing and never blowing their nose.
When the built up pressure finally overcomes the plug, the resulting explosion is so catastrophic it doesn’t leave a clean volcano shape. What you are left with is an uneven low topography dotted with lakes that marks the site of an incomprehensibly large explosion, hence the topography of Yellowstone, Wyoming and the Taupo Volcanic Zone on the North Island of New Zealand.
TIME FOR SOME STATS THAT WILL BREAK YOUR BRAIN
"The Taupō Volcanic Zone has produced in the last 350,000 years over 3,900 cubic kilometres (940 cu mi) material, more than anywhere else on Earth, from over 300 silicic eruptions [my edit: “Felsic” means “has lots of silica/silicic (silicic? seriously wikipedia?) and wants to form minerals high in silica like quartz and feldspar”], with 12 of these eruptions being caldera-forming. Detailed stratigraphy in the zone is only available from the Ōkataina Rotoiti eruption but including this event, the zone has been more productive than any other rhyolite predominant volcanic area [my edit: Rhyolite is a record of catastrophe, it is a Felsic, silica-rich igneous rock like Granite except it cooled FAST at the surface instead of in big underground “batholiths” (that make up a good portion of the Canadian Shield and the NE of the US among other places) where the minerals had time to grow into big pretty crystals, same ingredients as Granite but with much more exciting baking instructions] over the last 50,000 odd years at 12.8 km3 (3.1 cu mi) per thousand years. Comparison of large events in the Taupō volcanic zone over the last 1.6 million years at 3.8 km3 (0.91 cu mi) per thousand years versus with Yellowstone Caldera’s 2.1 million year productivity at 3.0 km3 (0.72 cu mi) per thousand years favours Taupo…
…The last major eruption from Lake Taupō, the Hatepe eruption, occurred in 232 CE. It is believed to have first emptied the lake, then followed that feat with a pyroclastic flow that covered about 20,000 km2 (7,700 sq mi) of land with volcanic ash. A total of 120 km3 (29 cu mi) of material expressed as dense-rock equivalent (DRE) is believed to have been ejected, and over 30 km3 (7.2 cu mi) of material is estimated to have been ejected in just a few minutes."…
^https://en.wikipedia.org/wiki/Taupō_Volcanic_Zone
…“The main extremely violent pyroclastic flow travelled at close to the speed of sound and devastated the surrounding area, climbing over 1,500 m (4,900 ft) to overtop the nearby Kaimanawa Ranges and Mount Tongariro, and covering the land within 80 km (50 mi) with ignimbrite [my edit: the name for pyroclastic flow deposits, i.e. pumice and ash, that kind of thing]. Only Ruapehu was high enough to divert the flow. The power of the pyroclastic flow was so strong that in some places it eroded more material off the ground surface than it replaced with ignimbrite. There is evidence that it occurred on an autumn afternoon and its energy release was about 150 megatons of TNT equivalent. The eruption column penetrated the stratosphere as revealed by deposits in ice core samples in Greenland and Antarctica.”
^https://en.wikipedia.org/wiki/Taupō_Volcanic_Zone
why the did I make this stupid meme in feet instead of metric, I am such an asshole -facepalm
So you are saying we need more concrete?
No no no, we need to dig down to the magma to release the pressure!
With a valve, I guess, to release the pressure gently
Time to invest in concrete companies. The demand is going to be HUGE!
IIRC when Mount Saint Helens erupted in the 80s it blew the top half of the volcano off.
So much awesome power in that eruption (with non-awesome human and nature/animal consequences).
http://mountsthelens.com/history-1.html
This article is a good play-by-play of how the eruption physically progressed, I particularly like this illustration.
Lies spread by Big Volcano
Wake up sheeple
Except Vesuvius, which looks like a volcano, but in 79CE erupted violently sending lave, magma and molten rocks several kilometers away, exactly like the stuffy nose you described. It completely destroyed Pompeii and Herculaneum, burying them for thousands of years.
Still nothing when compared to the destruction that the “Campi Flegrei” volcano brought 37’000 years ago, completely burying a huge section of the Campanian coastline.
Super cool!!
Aain I love how it looks like a drunk geologist made a big scribble on a map and said before passing out “that Campi Flegrei, that’s a BIG one right there!” and you are just left looking at the map being like… what… are you sure that just looks like you randomly circled a huge part of the landscape?..like… really the whole bay?
Yeah, it pretty much blew out that whole section of coastline, that big hole is called a “caldera”. It’s still active btw, you can go and check it out if you want. Look for Solfatara di Pozzuoli.
You can also look at the Greek island of Santorini, where the whole western and central part of the island was blown off during the bronze age iirc. Historians speculate the eruption, earthquake and tsunamis caused by the event could have partially influenced the collapse of the Minoan civilization, the rise of the Mycenaeans, turmoil in Egypt and possibly even the fall of the Chinese empire due to a global winter. Crazy stuff
Are we just a bunch of crazy conspiracy theorists sitting in dark rooms with a computer and pinboard against the wall, complete with strings between posted mugshots of lava domes and dikes, muttering to ourselves as we circle vaguely roundish things on a map in red ink and exclaim “ANOTHER!!!” ??
No, we are usually in the middle of nowhere in the woods hiking erratically across the landscape with nobody around so we tend to shout at things more than mutter because why not.
Made me whip out my geology notes I took a few semesters ago, thanks for the fun explanation
Hell yeah!
I’m currently in college getting my major with something in education and that comment, that’s the energy I want to capture
Thank you that was super informative. Is there anything that can be done to mitigate an impending eruption? Ive always heard that if one of the big super volcanoes goes it could be quite catastrophic for the entire world. Surely theres been some research into like pressure relief holes or something…antacid tabs?
I am sure there are lots of geologists who have thought of it, it makes sense right?
The problem is that nobody gives a shit about listening to geologists unless they are talking about where to find oil. Even if a geoengineering project of this scale and magnitude (with such catastrophic consequences if it goes wrong) where possible with near current geological science and hardware this degree of interest and investment of society is only ever committed to visions techbros provide and I don’t think a single techbro has ever taken a geology class and actually remotely paid attention.
It was geologists in the 1970s who first pointed out the obvious connection between human released CO2 emissions and global warming.
Nobody gave a shit :)
(plenty of complicit geologists who made a veryyyyy good living too don’t get me wrong)
We are just weirdos going on about rocks except when those rocks are really valuable and provide the capacity to create empires but even in those cases we are never really part of that, we are always still the weirdos going on about rocks who everybody is like “ok but can you shut up now and point to the gold on the map?”.
I know it is a weird example but look at the landscapes of virtual environments, video game developers have been trying to craft evocative landscapes since the beginning of video games even before 3D engines, you would think that some of them might have been interested to find inspiration for world design from the dizzying variety of landforms and stories described in geology (that are perfect to engage a player with because geological landscapes are layered stories first and foremost).
From the perspective of a geologist, it is obvious for game developers to make world building tools that allow molding an entire mountain range for an open world rpg by first starting with two continents and smashing them together with your mouse over and over again until it made a compelling starting point (instead of just making every damn mountain by hand or just writing a dumb algorithm to randomly generate mountains) and then running a massive river through the mountains for 10 million years to create the main valley for the game.
Todd Howard released a screenshot of the next Elder Scrolls Game
the story here was there was a river and then a mountain range came in (some new kid named Appalachians) and was like “sorry dude” but then the Delaware River was like “I am literally going nowhere bro, put your silly mountains wherever you want and I will cut you down when you get in my way”. This friendly conversation has been going on for 400-500 million years, which is about 1/8 of the earth’s history (the earth was a hot mess for the 1st billion so that barely counts). A lot of rivers are pretty lazy, but not the Delaware River, you gotta give it credit.
A geological sandbox for large scale world design that allowed game developers to quickly and intuitively create landscapes with layered pasts and local variety that perennially inspired curiosity from players seems so obvious to me it is painful. (Also as a fun toy for its own sake).
Like damn… video games barely know how to make a rock outcrop look natural and it is 2024… ——
All that being said to point out that your vision of a cool geo-engineering project is mostly unrealistic because of humans not even bringing geology into the picture. Part of the globalized contagion of late-stage capitalism is VERY crucially a collective forgetting of the stories in the landscapes around us. We have been taught to see the landscape around us as a background for our genius, not the primary gift passed down by our ancestors, the foundation of all the beauty in our lives and a fascinating machine of anarchy that creates endless forms of order.
Everywhere all over the world people are extracting groundwater at a ridiculously unsustainable rate (the fucking AXIS EARTH IS TILTED ON has changed because so much groundwater has been extracted) even while geologists try to point out there is going to be no clean water left???, the dysfunction of our thinking with respect to land goes very deep unfortunately.
Instead we are left with this trash Elon Musk-esque obsession with spiritually disconnecting ourselves from Earth and leaving for Mars as if the idea of separating us from the landscape (and natural systems/biosphere) we evolved in makes any sense at a basic level of our body maintaining homeostasis effectively or is something we would even desire to do (thanks for that one, sci-fi shows and books!). It is like plucking an ant from an ant colony, carefully placing it into the ocean and whispering “now you can start a new life here”…… It makes no sense.
You are right sadly :( but dont discredit yourself so much! A ton of people do listen and a ton of people think yall are cool! I think you’re cool. Its just that those people and I dont tend to be the people that have the resource to make decisions