First a definition for this question, because there are many kinds of sci-fi out there and they sometimes liberally use cool sounding words without explaining them:

A disruptor is a kind of weapon that weakens, or “disrupts”, either material bonds (breaking a material into molecules), molecular bonds (breaking a molecule into atoms), or atomic bonds (breaking an atomic nucleus into protons, netrons, and free electrons. Almost like instantly turning into plasma).

Temperature can do these things, but the idea behind a disruptor, specifically, is that it happens through some kind of catalyst, rather than brute-forcing with insane amounts of heat.

Would such a weapon physically be possible (even if we don’t know how to make them just yet)?

How would a target realistically behave when hit by a disruptor?

  • Brokkr@lemmy.world
    link
    fedilink
    arrow-up
    13
    ·
    16 days ago

    Unfortunately, this is one of those fun ideas that simply won’t ever be possible. Even if we start with the easy one of just breaking chemical bonds, those bonds exist because it reduces the total energy of the system.

    To “disrupt” those bonds, energy must be supplied, and to do it for even a small amount of material would require a tremendous amount of energy. Delivering that much energy over a distance just isn’t possible because atmosphere in between would also be “disrupted”. The disrupted material would also fly apart at high speeds and high temperatures. So any type of “ray” or “gun” would just turn into a bomb with a pistol grip trigger. I expect that the user experience testing would have lots of very negative reviews.

    • Infynis@midwest.social
      link
      fedilink
      English
      arrow-up
      1
      ·
      16 days ago

      Klingons are exactly the race to turn something that does that into a real gun. They have all those redundant organs for a reason

  • Brainsploosh@lemmy.world
    link
    fedilink
    arrow-up
    3
    ·
    16 days ago

    A conceivable way could be to disrupt the nuclear force of the target atoms, maybe like an anti-Pion/Gluon ray that self-propagates the reaction through the released energy.

    (As we might remember, splitting the atom yields a bunch of energy, and uncontrolled such reactions go Hiroshima)

    It might be controlled by sub-particle lensing, probably some kind of magnetic field, to be active at a specific distance.

    For the reaction to be contained, either there’s a radially limiting component (air is not particle dense enough to propagate the reaction, or atoms not energy dense enough) or it’s a cascade triggered by the beam which stops when the beam stops (or the reaction gets too far away from it)

    As I believe Pions and Gluons are their own anti-particles, I don’t know how we would go about doing this, but hey, that’s for Science!™ to solve.

  • FuglyDuck@lemmy.world
    link
    fedilink
    English
    arrow-up
    3
    ·
    edit-2
    16 days ago

    So…. Wouldn’t a fission bomb be a “disruptor bomb”?

    What you describe sounds an awful lot like the reaction in nuclear fission (with neutrons knocking a cascade of other neutrons out of atoms.).

    Maybe a disruptor beam is just a neutron beam that causes a cascading reaction in more than just the typical “fissionable” materials. This is where we get the fun technobabble!

  • ChonkyOwlbear@lemmy.world
    link
    fedilink
    arrow-up
    3
    ·
    16 days ago

    I could see it being a kind of biological disruptor. Radiation basically does this anyway. It tears apart DNA and interferes with cellular metabolism.

  • intensely_human@lemm.ee
    link
    fedilink
    arrow-up
    1
    ·
    16 days ago

    Yes. If you know the material’s molecular composition, you can tune a series of lasers to break those bonds with minimal energy input.

    You don’t even need the explicit makeup of the material. You can just do a quick calibrating scan consisting of a rainbow sweep of every frequency, while watching to see the scattering pattern of the photons.

    Assuming that your laser tuning system makes different tones when it’s producing different wavelengths of light, your weapon’s appearance while firing would be like:

    • It makes a sound like VWEEEP and plays a shifting rainbow pattern across the object to be disrupted
    • Once calibration is complete, it makes a loud BWAAAAAH sound as the object turns to vapor/powder

    The calibration is only like one second. These properties conveniently make it awesome to include in a cinematic depiction such as a sci fi movie.